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Welcome to SMURFF’s documentation. SMURFF is a highly optimized and parallelized framework for Bayesian
Matrix and Tensors Factorization.

The easiest way to install SMURFF is to use conda:

conda install -c vanderaa smurff

To get started with SMURFF using IPython notebooks, have a look at our Getting Started using IPython Notebooks.
To learn more about Matrix Factorization, have a look at What is SMURFF.
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2 Contents



CHAPTER 1

Contents

1.1 What is SMURFF

SMURFF is a highly optimized and parallelized framework for Bayesian Matrix and Tensors Factorization.

1.1.1 What is Bayesian Matrix Factorization

Matrix factorization is a common machine learning technique for recommender systems, like books for Amazon or
movies for Netflix.

The idea of these methods is to approximate the user-movie rating matrix R as a product of two low-rank matrices U
and V such that R U × V . In this way U and V are constructed from the known ratings in R, which is usually very
sparsely filled. The recommendations can be made from the approximation U × V which is dense. If M × N is the
dimension of R then U and V will have dimensions M × K and N × K. Noise is added to the model to avoid overfitting.

1.1.2 What can SMURFF do for you

SMURFF supports multiple matrix factorization methods:

• BPMF, the basic version;

• Macau, adding support for high-dimensional side information to the factorization;

• GFA, doing Group Factor Anaysis.

Macau and BPMF can also perform tensor factorization.

1.2 Getting Started using IPython Notebooks

This section contains documentation generated from IPython notebooks that discuss different aspects of SMURFF.
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Note: This page was generated from notebooks/a_first_example.ipynb.

1.2.1 A first example running SMURFF

In this notebook we will run the BPMF algorithm using SMURFF, on compound-activity data.

Downloading the data files

In these examples we use ChEMBL dataset for compound-proteins activities (IC50). The IC50 values and ECFP
fingerprints can be downloaded using this smurff function:

[ ]: import smurff

import logging
logging.basicConfig(level = logging.INFO)

ic50_train, ic50_test, ecfp = smurff.load_chembl()

The resulting variables are all scipy.sparse matrices: ic50 is a sparse matrix containing interactions between
chemical compounds (in the rows) and protein targets (called essays - in the columns). The matrix is already split in
as train and test set.

The ecfp contains compound features. These features will not be used in this example.

Having a look at the data

The spy function in matplotlib is a handy function to plot sparsity pattern of a matrix.

[ ]: %matplotlib inline

from matplotlib.pyplot import figure, show

fig = figure()
ax = fig.add_subplot(111)
ax.spy(ic50_train.tocsr()[0:1000,:].T, markersize = 1)
show()

Running SMURFF

Finally we run make a BPMF training trainSession and call run. The run function builds the model and returns the
predictions of the test data.

[ ]: trainSession = smurff.BPMFSession(
Ytrain = ic50_train,
Ytest = ic50_test,
num_latent = 16,
burnin = 40,
nsamples = 200,
verbose = 1,
checkpoint_freq = 1,
save_freq = 1,

(continues on next page)
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(continued from previous page)

save_name = "first_example.hdf5")

predictions = trainSession.run()

We can use the calc_rmse function to calculate the RMSE.

[ ]: rmse = smurff.calc_rmse(predictions)
rmse

Plotting predictions versus actual values

Next to RMSE, we can also plot the predicted versus the actual values, to see how well the model performs.

[ ]: import numpy
from matplotlib.pyplot import subplots, show

y = numpy.array([ p.val for p in predictions ])
predicted = numpy.array([ p.pred_avg for p in predictions ])

fig, ax = subplots()
ax.scatter(y, predicted, edgecolors=(0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
show()

[ ]:

Note: This page was generated from notebooks/input_matrices_and_tensors.ipynb.

[ ]: import numpy as np
import scipy.sparse as sp
import smurff
import logging
logging.basicConfig(level = logging.INFO)

1.2.2 Input to SMURFF

In this notebook we will look at how to provide input to SMURFF with dense and sparse matrices;

SMURFF accepts the following matrix files for train, test and side-info data:

• for dense matrix or tensor input: numpy.ndarrays

• for sparse matrices input: scipy Sparse matrices in COO, CSR or CSC format

• for sparse tensors: a wrapper around a pandas.DataFrame

Let’s have a look on how this could work.

1.2. Getting Started using IPython Notebooks 5
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Dense Train Input

[ ]: # dense input
Ydense = np.random.rand(10, 20)
trainSession = smurff.TrainSession(burnin = 5, nsamples = 5)
trainSession.addTrainAndTest(Ydense)
trainSession.run()

Sparse Matrix Input

The so-called zero elements in sparse matrices can either represent

1. missing values, also called ‘unknown’ or ‘not-available’ (NA) values.

2. actual zero values, to optimize the space that stores the matrix

Important: * when calling addTrainAndTest(Ytrain, Ytest, is_scarce) the is_scarce refers to
the Ytrain matrix. Ytest is always scarce. * when calling addSideInfo(mode, sideinfoMatrix) with
a sparse sideinfoMatrix, this matrix is always fully known.

[ ]: # sparse matrix input with 20% zeros (fully known)
Ysparse = sp.rand(15, 10, 0.2)
trainSession = smurff.TrainSession(burnin = 5, nsamples = 5)
trainSession.addTrainAndTest(Ysparse, is_scarce = False)
trainSession.run()

[ ]: # sparse matrix input with unknowns (the default)
Yscarce = sp.rand(15, 10, 0.2)
trainSession = smurff.TrainSession(burnin = 5, nsamples = 5)
trainSession.addTrainAndTest(Yscarce, is_scarce = True)
trainSession.run()

Tensor input

SMURFF also supports tensor factorization with and without side information on any of the modes. Tensor can be
thought as generalization of matrix to relations with more than two items. For example 3-tensor of drug x cell
x gene could express the effect of a drug on the given cell and gene. In this case the prediction for the element
Yhat[i,j,k]* is given by

𝑌𝑖𝑗𝑘 =

𝐷∑︁
𝑑=1

𝑢
(1)
𝑑,𝑖𝑢

(2)
𝑑,𝑗𝑢

(3)
𝑑,𝑘 +𝑚𝑒𝑎𝑛

Visually the model can be represented as follows:
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Tensor model predicts Yhat[i,j,k] by multiplying all latent vectors together element-wise and then taking the
sum along the latent dimension (figure omits the global mean).

For tensors SMURFF implements a SparseTensor class. SparseTensor is a wrapper around a pandas
DataFrame where each row stores the coordinate and the value of a known cell in the tensor. Specifically, the
integer columns in the DataFrame give the coordinate of the cell and float (or double) column stores the value in
the cell (the order of the columns does not matter). The coordinates are 0-based. The shape of the SparseTensor
can be provided, otherwise it is inferred from the maximum index in each mode.

Here is a simple toy example with factorizing a 3-tensor with side information on the first mode.

[ ]: import numpy as np
import pandas as pd
import scipy.sparse
import smurff
import itertools

## generating toy data
A = np.random.randn(15, 2)
B = np.random.randn(3, 2)

(continues on next page)
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(continued from previous page)

C = np.random.randn(2, 2)

idx = list( itertools.product(np.arange(A.shape[0]),
np.arange(B.shape[0]),
np.arange(C.shape[0])) )

df = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"])
df["value"] = np.array([ np.sum(A[i[0], :] * B[i[1], :] * C[i[2], :]) for i in idx ])

## assigning 20% of the cells to test set
Ytrain, Ytest = smurff.make_train_test(df, 0.2)

print("Ytrain = ", Ytrain)

## for artificial dataset using small values for burnin, nsamples and num_latents is
→˓fine
predictions = smurff.BPMFSession(

Ytrain=Ytrain,
Ytest=Ytest,
num_latent=4,
burnin=20,
nsamples=20).run()

print("First prediction of Ytest tensor: ", predictions[0])

[ ]:

Note: This page was generated from notebooks/different_methods.ipynb.

1.2.3 Trying different Matrix Factorzation Methods

In this notebook we will try out several MF methods supported by SMURFF.

Downloading the files

As in the previous example we download the ChemBL dataset. The resulting IC50 matrix is a compound x protein
matrix, split into train and test. The ECFP matrix has features as side information on the compounds.

[ ]: import smurff
import logging
logging.basicConfig(level = logging.INFO)

ic50_train, ic50_test, ecfp = smurff.load_chembl()

Matrix Factorization without Side Information (BPMF)

As a first example we can run SMURFF without side information. The method used here is BPMF.

Input matrix for Y is a sparse scipy matrix (either coo_matrix, csr_matrix or csc_matrix). The test matrix Ytest also
needs to ne sparse matrix of the same size as Y. Here we have used burn-in of 20 samples for the Gibbs sampler and
then collected 80 samples from the model. We use 16 latent dimensions in the model.

8 Chapter 1. Contents
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For good results you will need to run more sampling and burnin iterations (>= 1000) and maybe more latent dimen-
sions.

We create a trainSession, and the run method returns the predictions of the Ytest matrix. predictions is a list
of of type Prediction.

[ ]: trainSession = smurff.BPMFSession(
Ytrain = ic50_train,
Ytest = ic50_test,
num_latent = 16,
burnin = 20,
nsamples = 80,
verbose = 0,)

predictions = trainSession.run()
print("First prediction element: ", predictions[0])

rmse = smurff.calc_rmse(predictions)
print("RMSE =", rmse)

Matrix Factorization with Side Information (Macau)

If we want to use the compound features we can use the Macau algorithm.

The parameter side_info = [ecfp, None] sets the side information for rows and columns, respectively. In
this example we only use side information for the compounds (rows of the matrix).

[ ]: predictions = smurff.MacauSession(
Ytrain = ic50_train,
Ytest = ic50_test,
side_info = [ecfp, None],
direct = False,
num_latent = 16,
burnin = 40,
nsamples = 100).run()

smurff.calc_rmse(predictions)

Macau univariate sampler

SMURFF also includes an option to use a very fast univariate sampler, i.e., instead of sampling blocks of variables
jointly it samples each individually. An example:

[ ]: predictions = smurff.MacauSession(
Ytrain = ic50_train,
Ytest = ic50_test,
side_info = [ecfp, None],
direct = False,
univariate = True,
num_latent = 32,
burnin = 500,
nsamples = 3500,
verbose = 1,).run()

smurff.calc_rmse(predictions)

1.2. Getting Started using IPython Notebooks 9
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When using it we recommend using larger values for burnin and nsamples, because the univariate sampler mixes
slower than the blocked sampler.

[ ]:

Note: This page was generated from notebooks/different_noise_models.ipynb.

1.2.4 Different noise models

In this notebook we look at the different noise models.

Prepare train, test and side-info

We first need to download and prepare the data files. This can be acomplished using this a built-in function is smurff.
IC50 is a compound x protein matrix, The ECFP matrix as features as side information on the compounds.

[ ]: import smurff
import logging
logging.basicConfig(level = logging.INFO)

ic50_train, ic50_test, ecfp = smurff.load_chembl()

Fixed noise

The noise model of observed data can be annotated by calling addTrainAndTest with the optional parameter
noise_model. The default for this parameter is FixedNoise with precision 5.0

[ ]: trainSession = smurff.TrainSession(
priors = ['normal', 'normal'],
num_latent=32,
burnin=100,
nsamples=500)

# the following line is equivalent to the default, not specifing noise_model
trainSession.addTrainAndTest(ic50_train, ic50_test, smurff.FixedNoise(5.0))
predictions = trainSession.run()
print("RMSE = %.2f" % smurff.calc_rmse(predictions))

Adaptive noise

Instead of a fixed precision, we can also allow the model to automatically determine the precision of the noise by using
AdaptiveNoise, with signal-to-noise ratio parameters sn_init and sn_max.

• sn_init is an initial signal-to-noise ratio.

• sn_max is the maximum allowed signal-to-noise ratio. This means that if the updated precision would imply
a higher signal-to-noise ratio than sn_max, then the precision value is set to (sn_max + 1.0) / Yvar
where Yvar is the variance of the training dataset Y.

10 Chapter 1. Contents
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[ ]: trainSession = smurff.TrainSession(
priors = ['normal', 'normal'],
num_latent=32,
burnin=100,
nsamples=500)

trainSession.addTrainAndTest(ic50_train, ic50_test, smurff.AdaptiveNoise(1.0, 10.))
predictions = trainSession.run()
print("RMSE = %.2f" % smurff.calc_rmse(predictions))

Binary matrices

SMURFF can also factorize binary matrices (with or without side information). The input matrices can contain
arbitrary values, and are converted to 0’s and 1’ by means of a threshold. To factorize them we employ probit noise
model ProbitNoise, taking this threshold as a parameter.

To evaluate binary factorization, we recommed to use ROC AUC, which can be enabled by providing a threshold also
to the TrainSession.

[ ]: ic50_threshold = 6.
trainSession = smurff.TrainSession(

priors = ['normal', 'normal'],
num_latent=32,
burnin=100,
nsamples=100,
# Using threshold of 6. to calculate AUC on test data
threshold=ic50_threshold)

## using activity threshold pIC50 > 6. to binarize train data
trainSession.addTrainAndTest(ic50_train, ic50_test, smurff.ProbitNoise(ic50_
→˓threshold))
predictions = trainSession.run()
print("RMSE = %.2f" % smurff.calc_rmse(predictions))
print("AUC = %.2f" % smurff.calc_auc(predictions, ic50_threshold))

The input train and test sets are converted to -1 and +1 values, if the original values are below or above the threshold
(respectively). Similarly, the resulting predictions will be negative, if the model predicts the value to be below the
threshold, or positive, if the model predicts the value to be above the threshold.

[ ]: predictions[0]

Binary matrices with Side Info

It is possible to enhance the model for binary matrices by adding side information using the Macau algorithm. Note
that the binary here refers to the train and test data, not to the side information.

[ ]: ic50_threshold = 6.
trainSession = smurff.TrainSession(

priors = ['macau', 'normal'],
num_latent=32,
burnin=100,
nsamples=100,
# Using threshold of 6. to calculate AUC on test data
threshold=ic50_threshold)

(continues on next page)
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(continued from previous page)

## using activity threshold pIC50 > 6. to binarize train data
trainSession.addTrainAndTest(ic50_train, ic50_test, smurff.ProbitNoise(ic50_
→˓threshold))
trainSession.addSideInfo(0, ecfp, direct = False)
predictions = trainSession.run()
print("RMSE = %.2f" % smurff.calc_rmse(predictions))
print("AUC = %.2f" % smurff.calc_auc(predictions, ic50_threshold))

[ ]:

[ ]:

[ ]:

Note: This page was generated from notebooks/inference_with_smurff.ipynb.

1.2.5 Inference with SMURFF

In this notebook we will continue on the first example. After running a training trainSession again in SMURFF, we
will look deeper into how to use SMURFF for making predictions. The full Python API for predictions is available in
Python API Reference » Inference.

To make predictions we recall that the value of a tensor model is given by a tensor contraction of all latent matrices.
Specifically, the prediction for the element 𝑌𝑖𝑗𝑘 of a rank-3 tensor is given by

𝑌𝑖𝑗𝑘 =

𝐷∑︁
𝑑=1

𝑢
(1)
𝑑,𝑖𝑢

(2)
𝑑,𝑗𝑢

(3)
𝑑,𝑘 +𝑚𝑒𝑎𝑛

Since a matrix is a rank-2 tensor the prediction for a matrix is given by:

𝑌𝑖𝑗 =

𝐷∑︁
𝑑=1

𝑢
(1)
𝑑,𝑖𝑢

(2)
𝑑,𝑗 +𝑚𝑒𝑎𝑛

These inner products are computed by SMURFF automagicaly, as we will see below.

Saving models

We run a Macau training trainSession using side information (ecfp) from the chembl dataset. We make sure we save
every 10th sample, such that we can load the model afterwards. This run will take some minutes to run.

[ ]: import smurff
import os
import logging

ic50_train, ic50_test, ecfp = smurff.load_chembl()

# limit to 100 rows and 100 features to make thinks go faster
ic50_train = ic50_train.tocsr()[:100,:]
ic50_test = ic50_test.tocsr()[:100,:]

(continues on next page)
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(continued from previous page)

ecfp = ecfp.tocsr()[:100,:].tocsc()[:,:100]

trainSession = smurff.MacauSession(
Ytrain = ic50_train,
Ytest = ic50_test,
side_info = [ecfp, None],
num_latent = 16,
burnin = 200,
nsamples = 100,
save_freq = 10,
save_name = "ic50-macau.hdf5",
verbose = 2,)

predictions = trainSession.run()

Saved Model

The model is saved in an HDF5 file, in this case ic50-macau.hdf5. The file contains all saved info from this
training run. For example:

[ ]: %%bash

h5ls -r ic50-macau.hdf5 | head -n 30

The structure of the HDF5 file is:

• Datasets in /config contain the input data and configuration provided to the TrainSession

• The different /sample_* datasets contain for each posterior sample:

• Predictions for the provided test matrix:

– predictions/pred_1sample: Predictions from this sample

– predictions/pred_avg: Predictions average across this and all previous samples

– predictions/pred_var: Predictions variance across this and all previous samples

• latents_*: Latent samples for each dimension

• link_matrices/: When sideinfo is used with the MacauPrior, this HDF5 group contains the ß link
matrix, and the µ HyperPrior sample. This will allow to make predictions from unseen sideinfo.

Sparse matrices and tensors are stored using the h5sparse-tensor Python package which is automatically installed as a
dependency of smurff.

Making predictions from a TrainSession

The easiest way to make predictions is from an existing TrainSession:

[ ]: predictor = trainSession.makePredictSession()
print(predictor)

Once we have a PredictSession, there are serveral ways to make predictions:

• From a sparse matrix

• For all possible elements in the matrix (the complete 𝑈 × 𝑉 )

1.2. Getting Started using IPython Notebooks 13
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• For a single point in the matrix

• Using only side-information

Predict all elements

We can make predictions for all rows × columns in our matrix

[ ]: p = predictor.predict_all()
print(p.shape) # p is a numpy array of size: (num samples) x (num rows) x (num
→˓columns)

Predict element in a sparse matrix

We can make predictions for a sparse matrix, for example our ic50_test matrix:

[ ]: p = predictor.predict_some(ic50_test)
print(len(p),"predictions") # p is a list of Predictions
print("predictions 1:", p[0])

Predict just one element

Or just one element. Let’s predict the first element of our ic50_test matrix:

[ ]: from scipy.sparse import find
(i,j,v) = find(ic50_test)
p = predictor.predict_one((i[0],j[0]),v[0])
print(p)

And plot the histogram of predictions for this element.

[ ]: %matplotlib inline
import matplotlib.pyplot as plt

# Plot a histogram of the samples.
plt.subplot(111)
plt.hist(p.pred_all, bins=10, density=True, label = "predictions's histogram")
plt.plot(p.val, 1., 'ro', markersize =5, label = 'actual value')
plt.legend()
plt.title('Histogram of ' + str(len(p.pred_all)) + ' predictions')
plt.show()

Make predictions using side information

We can make predictions for rows/columns not in our train matrix, using only side info:

[ ]: import numpy as np
from scipy.sparse import find

(i,j,v) = find(ic50_test)
row_side_info = ecfp.tocsr().getrow(i[0])

(continues on next page)
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(continued from previous page)

p = predictor.predict_one((row_side_info,j[0]),v[0])
print(p)

It is also possible to provide sideinfo for the columns, if the MacauPrior was used for the columns. See
smurff.PredictSession.predict for the full documentation.

Making predictions from saved run

One can also make a PredictSession from a saved HDF5 file:

[ ]: import smurff

predictor = smurff.PredictSession("ic50-macau.hdf5")
print(predictor)

[ ]:

Note: This page was generated from notebooks/centering.ipynb.

1.2.6 Centering

In this notebook we look at why it is important to center your matrices before using them with SMURFF.

SMURFF provides a function similar to sklearn.preprocessing.scale with the difference that SMURFF also supports
scaling of sparse matrices. This makes sense only when the matrix is scarce, i.e. when the zero-elements represent
unknown values.

The Matrix Factorization methods are meant for modeling the variance in the data. Hence it makes sense to subtract
the mean first.

[ ]: import smurff

import logging
logging.basicConfig(level = logging.INFO)

ic50_train, ic50_test, ecfp = smurff.load_chembl()

ic50_train_centered, global_mean, _ = smurff.center_and_scale(ic50_train, "global",
→˓with_mean = True, with_std = False)

ic50_test_centered = ic50_test
ic50_test_centered.data -= global_mean # only touch non-zeros

When we now run a SMURFF train trainSession, we can see from the TrainSession information, that the data has
been centered:

PythonSession {
Data: {
Type: ScarceMatrixData [with NAs]
Component-wise mean: 3.86555e-16
...

1.2. Getting Started using IPython Notebooks 15
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[ ]: trainSession = smurff.BPMFSession(
Ytrain = ic50_train_centered,
Ytest = ic50_test,
num_latent = 16,
burnin = 40,
nsamples = 200,
verbose = 0,)

predictions = trainSession.run()
rmse = smurff.calc_rmse(predictions)
print(rmse)

1.3 Compilation of SMURFF

Note: the easiest way to install SMURFF is not to build it yourself. Install the binary Conda package:

conda install -c vanderaa smurff

1.3.1 Compilation using conda build

Conda build works on Linux, macOS and Windows. Execute

conda build smurff

in the conda-recipes directory.

1.3.2 Compilation using CMake

C++ Requirements

• CMake 3.6 or later

• Eigen3 version 3.3.7 or later

• HighFive 2.2. from https://github.com/BlueBrain/HighFive/

• Boost 1.5x or newer

Python Requirements

As in setup.py:

install_requires = [ ‘numpy’, ‘scipy’, ‘pandas’, ‘scikit-learn’, ‘h5sparse-tensor’ ], setup_requires = [‘se-
tuptools_scm’, ‘pybind11’ ],

Compile using setup.py

Running setup.py install

will run CMake to configure, compile and install SMURFF. Extra arguments to CMake can be passed with

setup.py –extra-cmake-args <. . . > install

16 Chapter 1. Contents
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or by setting the CMAKE_ARGS environment variables.

CMake Options

• Build type switches:

– CMAKE_BUILD_TYPE - Debug/Release

• Algebra library switches (select only one):

– When no switches are specified, CMake will try to find any LAPACK and BLAS library on your
system.

– ENABLE_OPENBLAS - ON/OFF (should include openblas library when linking. openblas also
contains implementation of lapack called relapack)

– ENABLE_MKL - ON/OFF: tries to find the MKL single dynamic library.

• Python:

– ENABLE_PYTHON

Linux and macOs Specific

Have a look in ci/ for Docker build scripts and for Linux+macOS wheel scripts. These scripts should give you a good
idea on how to compiler on an Ubuntu and macOS system.

Windows Specific

Work for a vcpkg-based build is in progress.

1.4 Python API Reference

This section of the documentation details modules, classed, and functions of SMURFF.

1.4.1 Preprocessing and Input Files

This section talks about:

Contents

• Preprocessing and Input Files

– Sparse Tensors

– Split Train and Test

– Scaling and Centering

– Example ChEMBL dataset
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Sparse Tensors

class smurff.SparseTensor(data, shape=None)
Wrapper around a pandas DataFrame to represent a sparse tensor

The DataFrame should have N index columns (int type) and 1 value column (float type) N is the dimensionality
of the tensor

You can also specify the shape of the tensor. If you don’t it is detected automatically.

Split Train and Test

smurff.make_train_test(Y, ntest, shape=None, seed=None)
Splits a sparse matrix Y into a train and a test matrix.

Parameters Y – numpy.ndarray or pandas.DataFrame or smurff.SparseTensor

Matrix/Array/Tensor to split

Returns

• Ytrain (csr_matrix) – train part

• Ytest (csr_matrix) – test part

Scaling and Centering

smurff.center.center_and_scale(m, mode, with_mean=True, with_std=True)
Center and/or scale the matrix m to the mean and/or standard deviation.

Parameters

• m ({array-like, sparse matrix}) – The data to center and scale.

• mode ({ "rows", "cols", "global" }) –

– “rows”: center/scale each row indepently

– ”cols”: center/scale each column idependently

– ”global”: center/scale using global meand and/or standard deviation/

• with_mean (boolean, True by default) – If True, center the data before scaling.

• with_std (boolean, True by default) – If True, scale the data to unit variance
(or equivalently, unit standard deviation).

Returns

• m (array-like) – Transformed array.

• mean (array-like or double or None) – Computed mean depending on mode

• std (array-like or double or None) – Computed standard deviation depending on mode

Notes

Also supports scaling of sparse matrices. This makes sense only when the matrix is scarce, i.e. when the
zero-elements represent unknown values.
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Example ChEMBL dataset

smurff.load_chembl()
Downloads a small subset of the ChEMBL dataset.

Returns

• ic50_train (sparse matrix) – sparse train matrix

• ic50_test (sparse matrix) – sparse test matrix

• feat (sparse matrix) – sparse row features

1.4.2 Training

Contents

• Training

– TrainSession

– MacauSession

– BPMFSession

– StatusItem

The most versatile class is TrainSession. MacauSession and BPMFSession provide a simpler interface.

TrainSession

class smurff.TrainSession(priors=[’normal’, ’normal’], num_latent=None, num_threads=None,
burnin=None, nsamples=None, seed=None, threshold=None,
verbose=None, save_name=None, save_freq=None, check-
point_freq=None)

Class for doing a training run in smurff

A simple use case could be:

>>> trainSession = smurff.TrainSession(burnin = 5, nsamples = 5)
>>> trainSession.setTrain(Ydense)
>>> trainSession.run()

priors
The type of prior to use for each dimension

Type list, where element is one of { “normal”, “normalone”, “macau”, “macauone”, “spikeand-
slab” }

num_latent
Number of latent dimensions in the model

Type int

burnin
Number of burnin samples to discard

Type int
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nsamples
Number of samples to keep

Type int

num_threads
Number of OpenMP threads to use for model building

Type int

verbose
Verbosity level for C++ library

Type {0, 1, 2}

seed
Random seed to use for sampling

Type float

save_name
HDF5 filename to store the samples.

Type path

save_freq

• N>0: save every Nth sample

• N==0: never save a sample

• N==-1: save only the last sample

Type int

checkpoint_freq
Save the state of the trainSession every N seconds.

Type int

addData(pos, Y, noise=<smurff.helper.FixedNoise object>, is_scarce=False)
Stacks more matrices/tensors next to the main train matrix.

pos [shape] Block position of the data with respect to train. The train matrix/tensor has implicit block
position (0, 0).

Y [:class: numpy.ndarray, scipy.sparse matrix or :class: SparseTensor] Data matrix/tensor to add

is_scarce [bool] When Y is sparse, and is_scarce is True the missing values are considered as unknown.
When Y is sparse, and is_scarce is False the missing values are considered as zero. When Y is dense,
this parameter is ignored.

noise [:class: NoiseConfig] Noise model to use for Y

addPropagatedPosterior(mode, mu, Lambda)
Adds mu and Lambda from propagated posterior

mode [int] dimension to add side info (rows = 0, cols = 1)

mu [:class: numpy.ndarray matrix] mean matrix mu should have as many rows as num_latent mu should
have as many columns as size of dimension mode in train

Lambda [:class: numpy.ndarray matrix] co-variance matrix Lambda should be shaped like K x K x N
Where K == num_latent and N == dimension mode in train
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addSideInfo(mode, Y, noise=<smurff.helper.SampledNoise object>, direct=True)
Adds fully known side info, for use in with the macau or macauone prior

mode [int] dimension to add side info (rows = 0, cols = 1)

Y [:class: numpy.ndarray, scipy.sparse matrix] Side info matrix/tensor Y should have as many rows
in Y as you have elemnts in the dimension selected using mode. Columns in Y are features for each
element.

noise [:class: NoiseConfig] Noise model to use for Y

direct [boolean]

• When True, uses a direct inversion method.

• When False, uses a CG solver

The direct method is only feasible for a small (< 100K) number of features.

init()
Initializes the TrainSession after all data has been added.

You need to call this method befor calling step(), unless you call run()

Returns

Return type StatusItem of the trainSession.

makePredictSession()
Makes a PredictSession based on the model that as built in this TrainSession.

run()
Equivalent to:

self.init()
while self.step():

pass

setTrain(Y, noise=<smurff.helper.FixedNoise object>, is_scarce=True)
Adds a train and optionally a test matrix as input data to this TrainSession

Parameters

• Y – Train matrix/tensor

• noise – Noise model to use for Y

• is_scarce (bool) – When Y is sparse, and is_scarce is True the missing values are
considered as unknown. When Y is sparse, and is_scarce is False the missing values are
considered as zero. When Y is dense, this parameter is ignored.

step()
Does on sampling or burnin iteration.

Returns

• - When a step was executed (StatusItem of the trainSession.)

• - After the last iteration, when no step was executed (None.)
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MacauSession

class smurff.MacauSession(Ytrain, is_scarce=True, Ytest=None, side_info=None, univari-
ate=False, direct=True, *args, **kwargs)

A train trainSession specialized for use with the Macau algorithm

Ytrain

Train matrix/tensor

Ytest [scipy.sparse matrix or :class: SparseTensor] Test matrix/tensor. Mainly used for calculating
RMSE.

side_info [list of :class: numpy.ndarray, scipy.sparse matrix or None] Side info matrix/tensor for
each dimension If there is no side info for a certain mode, pass None. Each side info should have as
many rows as you have elemnts in corresponding dimension of Ytrain.

direct [bool] Use Cholesky instead of CG solver

univariate [bool] Use univariate or multivariate sampling.

**args: Extra arguments are passed to the TrainSession

Type

class numpy.ndarray, scipy.sparse matrix or :class: SparseTensor

BPMFSession

class smurff.BPMFSession(Ytrain, is_scarce=True, Ytest=None, univariate=False, *args, **kwargs)
A train trainSession specialized for use with the BPMF algorithm

Ytrain

Train matrix/tensor

Ytest [scipy.sparse matrix or :class: SparseTensor] Test matrix/tensor. Mainly used for calculating
RMSE.

univariate [bool] Use univariate or multivariate sampling.

**args: Extra arguments are passed to the TrainSession

Type

class numpy.ndarray, scipy.sparse matrix or :class: SparseTensor

StatusItem

class smurff.StatusItem
Short set of parameters indicative for the training progress.

auc_1sample
ROC AUC of the test matrix of the last sampleOnly available if you provided a threshold

auc_avg
Average ROC AUC of the test matrix across all samplesOnly available if you provided a threshold

elapsed_iter
Number of seconds the last sampling iteration took
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iter
Current iteration in current phase

nnz_per_sec
Compute performance indicator; number of non-zero elements in train processed per second

phase
{ “Burnin”, “Sampling” }

rmse_1sample
RMSE for test matrix of last sample

rmse_avg
Averag RMSE for test matrix across all samples

samples_per_sec
Compute performance indicator; number of rows and columns in U/V processed per second

train_rmse
RMSE for train matrix of last sample

1.4.3 Inference

Contents

• Inference

– PredictSession

– Prediction

A PredictSession provides access to making prediction from saved models. Predictions for a single point are
stored in the Prediction.

PredictSession

class smurff.PredictSession(h5_fname)
TrainSession for making predictions using a model generated using a TrainSession.

A PredictSession can be made directly from a TrainSession

>>> predict_session = train_session.makePredictSession()

or from an HDF5 file

>>> predict_session = PredictSession("saved_output.hdf5")

predict(operands, samples=None)
Generate predictions on operands. Parameters specify coordinates of sideinfo/features for each dimension.

Parameters

• operands (tuple) – A combination of coordindates in the matrix/tensor and/or fea-
tures you want to use to make predictions. len(operands) should be equal to number of
dimensions in the sample. Each element operands can be a:

– int : a single element in this dimension is selected. For example, a single row or column
in a matrix.
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– slice : a slice is selected in this dimension. For example, a number of rows or columns
in a matrix.

– Ellipsis or None: all elements in this dimension are selected. For example, all rows or
columns in a matrix.

– numpy.ndarray : 2D numpy array used as dense sideinfo. Each row vector is used
as side-info.

– scipy.sparse.spmatrix : sparse matrix used as sideinfo. Each row vector is
used as side-info.

• samples (range or None) – Range of samples to use for prediction, or None for all
samples

Returns list of N numpy.ndarray`s of shape `[ T1 x T2 x ... ] where N is
the number of samples in this PredictSession and T1 x T2 x . . .

Return type lis of numpy.ndarray

predict_all()
Computes prediction matrix/tensor for full train data shape.

Returns N numpy.ndarray`s of shape `[ T1 x T2 x ... ] where N is the
number of samples in this PredictSession and T1 x T2 x . . . is the shape of the train data

Return type list of numpy.ndarray

predict_sparse(test_matrix)
Computes prediction for all elements in a sparse test matrix

Parameters test_matrix (scipy sparse matrix) –

Returns list of N scipy.sparse.sp_matrix objects, where N is the number of samples

Return type list

Prediction

class smurff.Prediction(coords, val, pred_1sample=nan, pred_avg=nan, var=nan, nsamples=-1)
Stores predictions for a single point in the matrix/tensor

coords
Position of this prediction in the train matrix/tensor

Type shape

val
True value or “nan” if no true value is known

Type float

nsamples
Number of samples collected to make this prediction

Type int

pred_1sample
Predicted value using only the last sample

Type float

pred_avg
Predicted value using the average prediction across all samples
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Type float

var
Variance amongst predictions across all samples

Type float

pred_all
List of predictions, one for each sample

Type list

static fromTestMatrix(test_matrix_or_tensor)
Creates a list of predictions from a scipy sparse matrix”

Parameters test_matrix (scipy sparse matrix) –

Returns List of Prediction. Only the coordinate and true value is filled.

Return type list

TODO: FixedNoise, AdaptiveNoise, ProbitNoise
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